The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics.

نویسندگان

  • Shana Elbaum-Garfinkle
  • Younghoon Kim
  • Krzysztof Szczepaniak
  • Carlos Chih-Hsiung Chen
  • Christian R Eckmann
  • Sua Myong
  • Clifford P Brangwynne
چکیده

P granules and other RNA/protein bodies are membrane-less organelles that may assemble by intracellular phase separation, similar to the condensation of water vapor into droplets. However, the molecular driving forces and the nature of the condensed phases remain poorly understood. Here, we show that the Caenorhabditis elegans protein LAF-1, a DDX3 RNA helicase found in P granules, phase separates into P granule-like droplets in vitro. We adapt a microrheology technique to precisely measure the viscoelasticity of micrometer-sized LAF-1 droplets, revealing purely viscous properties highly tunable by salt and RNA concentration. RNA decreases viscosity and increases molecular dynamics within the droplet. Single molecule FRET assays suggest that this RNA fluidization results from highly dynamic RNA-protein interactions that emerge close to the droplet phase boundary. We demonstrate than an N-terminal, arginine/glycine rich, intrinsically disordered protein (IDP) domain of LAF-1 is necessary and sufficient for both phase separation and RNA-protein interactions. In vivo, RNAi knockdown of LAF-1 results in the dissolution of P granules in the early embryo, with an apparent submicromolar phase boundary comparable to that measured in vitro. Together, these findings demonstrate that LAF-1 is important for promoting P granule assembly and provide insight into the mechanism by which IDP-driven molecular interactions give rise to liquid phase organelles with tunable properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles.

Many intracellular membraneless organelles form via phase separation of intrinsically disordered proteins (IDPs) or regions (IDRs). These include the Caenorhabditis elegans protein LAF-1, which forms P granule-like droplets in vitro. However, the role of protein disorder in phase separation and the macromolecular organization within droplets remain elusive. Here, we utilize a novel technique, u...

متن کامل

Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics.

Living cells contain numerous membrane-less RNA/protein (RNP) bodies that assemble by intracellular liquid-liquid phase separation. The properties of these condensed phase droplets are increasingly recognized as important in their physiological function within living cells, and also through the link to protein aggregation pathologies. However, techniques such as droplet coalescence analysis or ...

متن کامل

Phase Separation by Low Complexity Domains Promotes Stress Granule Assembly and Drives Pathological Fibrillization

Stress granules are membrane-less organelles composed of RNA-binding proteins (RBPs) and RNA. Functional impairment of stress granules has been implicated in amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy-diseases that are characterized by fibrillar inclusions of RBPs. Genetic evidence suggests a link between persistent stress granules and the accumulation...

متن کامل

Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein.

Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the neg...

متن کامل

Spatial patterning of P granules by RNA-induced phase separation of the intrinsically-disordered protein MEG-3

RNA granules are non-membrane bound cellular compartments that contain RNA and RNA binding proteins. The molecular mechanisms that regulate the spatial distribution of RNA granules in cells are poorly understood. During polarization of the C. elegans zygote, germline RNA granules, called P granules, assemble preferentially in the posterior cytoplasm. We present evidence that P granule asymmetry...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 23  شماره 

صفحات  -

تاریخ انتشار 2015